
J .  Fluid Mech. (1982), vol. 125, pp.  9%122 

Printed in  Great Britain 

99 

Time-dependent solutions of multimode 
convection equations 

By JURI TOOMRE, 
Joint Institute for Laboratory Astrophysics, and Department of Astrophysical, Planetary and 

Atmospheric Sciences, University of Colorado, Boulder, Colorado 80309, U.S.A. 

D. 0. GOUGH 
Institute of Astronomy, and Department of Applied Mathematics and Theoretical Physics, 

University of Cambridge, Silver Street, Cambridge CB3 9EW, England 

AND E. A. SPIEGEL 
Department of Astronomy, Columbia University, New York, New York 10027, U.S.A. 

(Received 31 March 1981 and in revised form 6 July 1982) 

Truncated modal equations are used to study the time evolution of thermal 
convection. In the Boussinesq approximation these nonlinear equations are obtained 
by expanding the fluctuating velocity and temperature fields in a finite set of 
planforms of the horizontal coordinates. Here we report on numerical studies dealing 
with two or three modes with triad interactions. We have found rich time dependence 
in these cases: periodic and aperiodic solutions can be obtained, along with various 
steady solutions. Three-mode solutions reproduce the qualitative appearance of 
spoke-pattern convection as observed in experiments a t  high Prandtl numbers. 
Though the values of the periods of the time-dependent solutions do not agree with 
those of the experiments, their variation with Rayleigh number compares favourably. 
Except a t  the highest Rayleigh number we have considered (lo’), the theoretical 
Nusselt numbers agree well with experiment. 

1. Introduction 
In  the predecessors of this paper we attempted to describe the gross features of 

a convecting fluid by a simple if crude approximation procedure (Gough, Spiegel & 
Toomre 1975a, hereinafter referred to as I ;  Toomre, Gough & Spiegel 1977, 
hereinafter 11). We expanded the fluctuating temperature and velocity in terms of 
the planform functions of linear theory and kept only a few terms, or modes as we 
shall call them. In  I and I1 we described calculations in which only one mode was 
kept, and we solved the resulting equations for the vertical structure with accurate 
numerical schemes. Of course, the choice .of planform remains arbitrary, but 
nevertheless it was encouraging to learn in I1 that a choice exists that leads to a 
tolerably good representation of the mean properties of laboratory convection. 

In  the case of single-mode convection the solutions always evolved to steady states, 
which satisfy the system of equations first given by Roberts (1966). However, 
laboratory studies of convection become time-dependent a t  high enough Rayleigh 
number, and we would like to know whether and how well the modal approach 
represents this. Indeed, in two- and three-mode studies we have found sustained time 
dependence, both periodic and aperiodic, and we report here on these results. 
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Among the various solutions that we have found, perhaps the most interesting are 
those that describe periodic oscillations of hexagonal cells, and thus recall a 
qualitative behaviour found experimentally. However, from a practical point of view, 
we should also pay attention to the wide variety of solutions the modal procedure 
reveals. It is likely that the multiplicity of solutions we have found, but have not 
thoroughly catalogued, is indicative of a similar richness in the solution space of the 
full equations. The qualitative properties of modal solutions that have counterparts 
in experimental convection, together with the relative ease with which their 
equations may be solved at present, suggest that  they may provide a tool for 
exploring thp solution space of the full equations in a relatively simple way. For 
although it is now quite possible to solve the Boussinesq equations in three 
dimensions, the procedures require extensive programming and calculations. The 
modal equations, on the other hand, have only one space dimension and are rather 
easier to deal with. Hence they facilitate the study of nonlinear behaviour of the 
non-turbulent aspects of convection. 

2. Equations 
We consider a fluid in the Boussinesq approximation, of infinite horizontal extent, 

and bounded above and below by two horizontal plates maintained a t  constant 
temperatures that differ by AT. The temperature T of the fluid is measured in units 
of AT, and is considered to be decomposed into mean and fluctuating parts: 
T = F+e, where the overbar denotes horizontal average. All variables are made 
dimensionless by using the plate separation d and the thermal diffusion time d 2 / K  as 
units of length and time, where K is the thermal diffusivity of the fluid. 

As in I, the velocity u and the temperature fluctuation 6’ are expanded in terms 
of a set of planform functions f i (x ,  y) of the horizontal Cartesian coordinates: 

e = zfi oi, (2.2) 
i 

where the horizontal wavenumbers ai are constants and the amplitude functions 
Wi, Oi depend on the vertical coordinate z and time t .  The planforms f i  satisfy 

ayi ay. -+- = --a? 2 f .  a, 
a x 2  a y 2  

(2.3) 

and could be chosen to form a complete set, though here we consider only two or three 
terms in the series (2.1) and (2.2). Thus the horizontal structures of the fluctuating 
fields are quite crudely represented, but the representation by Wi and Oi of the 
vertical structures and time dependence is computed with some care. Note furthermore 
that the form (2.1) chosen for the velocity, which automatically satisfies div u = 0, 
does not include terms representing flow with vertical vorticity. 

The equations governing the model, whose derivation was described in I, are 
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Class Notation Description? 

1 (F, 2 )  Two aligned hexagons 
2 {F> 1/31 Two rotationally displaced hexagons 
3 [F, 21 Two aligned squares 
4 {F, 4 3 ,  2) 
5 

A hexagon and its first two overtones 
A triad of three aligned hexagons (F, n, n+ 1) 

t See appendix A for a more-detailed description. 

TABLE 1 

af, aijk = af(a;+a;-a3), C,, = i f i  fj fk. (2.8) 
a 
aZ 

where 
D -, 2. = 0 2 -  

The lower ( z  = 0) and upper ( z  = 1) boundaries are treated as rigid perfect thermal 
conductors. Thus we impose the conditions 

Wi = OWi = Oi = 0 ( z  = 0, l ) ,  

T = l  ( z = O ) ,  T = o  ( z = l ) ,  

(2.9) 
- 

along with suitable initial conditions, which we shall discuss later. 
I n  most cases we consider combinations of modes for which the interaction 

parameters c g j k  do not all vanish when i, j and k are not equal. Such combinations 
must have wavenumbers ai that  satisfy certain selection rules. The various classes 
studied are discussed explicitly in appendix A ;  they are summarized in table I. We 
shall refer to the mode with lowest wavenumber as the fundamental, and the others 
as horizontal overtones, and characterize a mode combination by the symbol F 
together with parameters that  define the overtone wavenumbers in terms of the 
fundamental. 

As in the case of the single-mode representation, multimode solutions exist in pairs. 
Two members of such a pair have the same Nusselt number N ,  and each can be 
derived from the other by the transformation 

z + l - z ,  %-+-I,& oi+-oi, T-1-T. (2.10) 

I n  the remainder of this discussion we shall regard any two steady states that are 
related by this transformation as being equivalent. 

We now turn to some important derived quantities. The first of these is the total 
heat flux F ( z ,  t ) ,  which, when measured in units of the flux in the conductive state, 
is given by 

F = Z w,Oj-DT. (2.11) 
i 

For steady solutions, F is independent of z and is equal to the Nusselt number N ,  
as i t  is normally defined. For time-periodic solutions the time average of F over one 
period is independent of z ,  and we call this average the Nusselt number. For the 
aperiodic solutions we have obtained, the temporal averages of F always tended to 
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a constant limit for long averaging times. Hence, for such cases, we may define a 
Nusselt number as 

(2.12) 

which is independent of z .  A second derived quantity of interest is the horizontal 
average of the specific kinetic energy associated with each mode: 

N = lim 8-1 j: ~ ( z ,  t )  d t ,  
S-Q, 

(2.13) 

To facilitate comparison with experimental data, i t  is useful to define also the r.m.s. 
velocity and temperature. For this purpose we introduce the operation ( ), which 
represents an average over horizontal coordinates and time. The r.m.s. vertical 
velocity is 

w,,, = (wZ) i  = (2.14) 

with a similar expression for the r.m.s. temperature fluctuation 8rms. We also consider 
the time-averaged mean temperature field 

(T) = lim s-'j:T(z, t ) d t .  
8-00 

(2.15) 

The partial differential equations (2.5)-(2.8) have been solved by the finite-difference 
methods that are discussed in appendix A of 11. We outline them briefly here. All 
spatial derivatives are expressed by second-order-accuracy centred differences. To 
ensure adequate spatial resolution, a stretched computational mesh is used. When 
introducing the stretching and also in displaying some of our results, i t  is useful to 
define a new independent variable [ ( z )  in which the grid points are evenly spaced. 
The mapping between [ and z is usually based on cubic or arctangent functions, with 
the stretching parameters so chosen that boundary layers can be resolved accurately 
(see also Gough, Spiegel & Toomre 19756). Implicit time representations are used in 
which all differential spatial operators are evaluated a t  the same time levels, ranging 
from a time-centred scheme, which minimizes numerical diffusion, to the very stable 
but diffusive fully implicit scheme. In  addition, provision is made to deal directly 
with the time-independent equations when sequences of steady solutions are to be 
constructed. 

The resulting nonlinear difference equations are solved at each time step by 
Newton-Raphson iteration, which requires repeated inversion of a M x M block- 
tridiagonal matrix. The number M of spatial grid points is usually about 300. The 
blocks are of order J x  J ,  with J depending upon the number of modes retained in 
the analysis ; J = 7 for two modes and J = 10 for three modes. Four Newton-Raphson 
iterations are usually needed per time step to solve the finite-difference equations with 
a relative precision of about For a three-mode truncation each time step 
requires 4.5 s of machine time on an IBM 360/95. 

The results presented in this paper are based on over five hundred multimode 
solutions sampling the (R,cr,ai) parameter space. Yet these have given us only a 
coarse coverage of the various kinds of behaviour of the modes. The investments in 
computer time are particularly high when i t  is required to ascertain the nature of 
the time dependence in some of the solutions. Only with very fine temporal and spatial 
resolution can the periodic solutions be obtained. We used about 200 time steps per 
periodic cycle for the {F, 2/3} solution illustrated in figure 3, and about 50 time steps 
per cycle for the gentler evolution of the {F, 2/3, 2) solution in figure 4. If started 
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from a steady solution near by, these solutions attain their periodic behaviour within 
about 10 cycles of computation. Although numerical errors can readily perturb a 
periodic solution into an aperiodic one, there also exist solutions that appear to be 
genuinely aperiodic or nearly periodic with long-term modulation. 

A variety of initial conditions were used in the calculations: They were usually 
constructed from solutions with different R, u and a(,  but often the amplitudes were 
scaled, and their relative signs changed, and random noise added, in order to test 
whether the final states to which the solution evolve depend on initial conditions. 
The steady and periodic solutions, when they exist, are generally insensitive to the 
initial conditions and are stable, but of course there are special regions in state space 
where this is not so. 

3. Survey of solutions 
We have toured a region of parameter space to descry the most common features 

of the solutions; the region extends in R to a maximum value of lo7, in u it ranges 
from to lo4, and it  covers the entire range of wavenumbers within which 
convection is sustained. Here we summarize the results, confining our report to two- 
and three-mode representations. 

When R < 1707 our solutions always evolved to the conductive state. Convective 
solutions a t  slightly supercritical Rayleigh numbers are dominated by just one of the 
modes, whose structure is close to that of a corresponding single-mode solution. It 
is not until R exceeds about lo5 that the multimode representation becomes richer 
than the single-mode case. We therefore focus our attention on the range 

We have encountered steady, periodic and aperiodic solutions. We call steady 
solutions those that evolve to  steady states as t + 00, and these seem to be the most 
prevalent if all regions in parameter space are weighted equally. Solutions that appear 
to remain time-dependent for all time occupy a narrow wavenumber range. In  
practice it was usually easy to decide whether or not a solution is time-dependent; 
difficulty was encountered only near the borders of the domains of time dependence, 
where the solutions evolve very slowly. We have not attempted to define these 
borders precisely. The time dependence is often complicated, and we have concen- 
trated on the periodic cases, being content for the moment to note where in parameter 
space the apparently chaotic behaviour seemed to arise. 

3.1. Steady two-mode solutions 

A close-packed cellular solution of the full equations of motion can be obtained by 
a modal expansion if sufficiently many terms in the expansion are kept. How many 
modes are needed to achieve reasonable accuracy should be decided by increasing the 
number until the result stops changing. Our two-mode solutions give some indication 
of the accuracy of the one-mode solutions a t  moderate Rayleigh numbers. 

I n  figure 1 comparison is made between the Nusselt numbers of a one-mode 
hexagon obtained in I1 and two directly coupled steady two-mode solutions. The 
parameters chosen are R = lo5 and u = 1, and N is- plotted as a function of 
wavenumber. Every solution shown corresponds to the gravest vertical mode of linear 
theory, as do all the steady states we obtained from time integrations, even when 
initial conditions close to  steady vertical overtone solutions were chosen. The dashed 
curve corresponding to the one-mode case has a single maximum a t  a = a,, here 6.6, 
in common with all other one-mode solutions. The principal result in figure 1 is the 
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a1 

FIGURE 1.  Nusselt numbers of steady one- and two-mode solutions at R = lo5, CT = 1 ,  plotted 
against wavenumber. The dashed line is for a single hexagon (C = 6-i). The solid curve is for a 
hexagon and its aligned overtone (F, 2 )  and the dot-dashed line for a hexagon and its rotated 
overtone {F, d3). In these cases the abscissa is the wavenumber a, of the fundamental mode. 
Convection is possible provided that a2 > d, and a,  < d,, where (G,, Gz) = (3.2 x 31.3) is the 
wavenumber range of linear instability of the conductive state. No other stable steady solutions 
were found for these values of R and u. Nusselt numbers of the time-periodic solutions are also 
shown for the two cases, the solid and dot-dashed lines referring to (F, 2 )  and {F, .\/3} as before; 
when a, was outside the ranges over which these lines extend, solutions tended always to steady 
states. No aperiodic solutions were found. 

solid curve, indicating N for a hexagon corrected by its first aligned overtone. The 
most striking feature is the existence of two maxima, which is typical of solutions 
with u 1. Also shown are values of N for the same fundamental hexagon with its 
rotated overtone. 

To appreciate the significance of the two-mode results one must realize that when 
a, 5 a, the fundamental has much smaller amplitude than the overtone. (We use 
the maximum of Wi(z) as a measure of amplitude.) Therefore when a, 5 a, the steady 
two-mode solutions resemble the one-mode solutions with wavenumbers equal to a2. 
If the steady branches of the solid and dot-dashed curves in this range are stretched 
horizontally by factors 2 and 2/3 respectively, they become almost identical with the 
one-mode curve. The slight differences arise because mode 2 is modulated by mode 
1 ,  which plays the role of a subharmonic. 

At higher wavenumbers the flow becomes dominated by the fundamental. The 
transition is quite abrupt, and occurs just above a2 = 12 in both cases. The amplitude 
of the overtone then decreases with increasing a,, and the second maximum in the 
Nusselt number corresponds to  a maximum in the heat transport by the fundamental 
mode. This does not occur near a, = a,, however, because here the amplitude of the 
overtone is still substantial, even though i t  is either stable or only slightly unstable 
in linear theory. It owes its existence to the fundamental, from which i t  drains energy. 
AS a, increases, the overtone develops nodes in its vertical structure, thus increasing 
the rate a t  which it dissipates energy. At even higher wavenumbers its amplitude 
diminishes so much that its dynamical influence on the fundamental mode becomes 
negligible; thus the two-mode curves in figure 1 eventually join the one-mode curve. 

The introduction of a third mode raises the number of steady solutions. Since we 
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find that the correction to the mean quantities caused by an additional mode are 
not appreciable for the steady solutions when R N lo5, we have not studied these in 
detail. The matter is quite different for the time-dependent solutions, which have no 
counterpart in one-mode theory. In  the case of hexagons, the fundamental mode has 
two first overtones, and we consider it natural, though not compelling, to include them 
both. 

A point that  deserves comment is that the Nusselt number of the steady hexagonal 
solutions decreases as the Prandtl number decreases, as is the case for the single-mode 
solutions. However, numerical solutions of the full equations for axisymmetrical 
convection in a cylinder by Jones, Moore & Weiss (1976) show very little a-dependence, 
and even a slight increase in N as a decreases. The reason is that the flow organizes 
itself in such a way as to diminish the restraining effect of the advection, as in the 
case of rolls. As was first noticed by J .  Herring (unpublished) for convection in a 
horizontally unbounded layer a t  the limit cr = 0, this permits the energy of the motion 
to exceed the potential energy associated with the unstable stratification, and it leads 
to a form of two-dimensional convection that Moore & Weiss (1973) have likened to 
a flywheel. We pointed out in I1 that the constraints imposed on the flow by severe 
modal truncation prevent the annihilation of the effects of advection, even when we 
attempt to represent axisymmetrical convection in a cylinder. This underlines a 
deficiency in the model. Nevertheless, that  may not necessarily be of great concern 
for modelling real flows, because the flywheel solutions are unstable (Jones & Moore 
1979). We believe that the development of the instabilities will diminish N when a 
is very low. 

3.2. Time-dependent solutions 
Our surveys were conducted in limited regions of parameter space. We have done 
very little work with more than three modes, and will not report at all on that. And, 
in our three-mode studies, we have confined our attention almost exclusively to 
hexagonal planform functions. Thus we report mainly on them, mentioning more 
briefly the related two-mode solutions. 

Provided R and a are sufficiently high and there is a t  least one non-zero component 
of G,, with i, j and k not all equal, time-dependent multimode solutions can be found 
within a limited range of wavenumbers. The extent of the wavenumber range 
increases as R increases. When R < lo4 only steady solutions could be found whatever 
the value of a ;  and a t  R = lo5 periodic two-mode solutions were obtained, as 
indicated in figure 1.  At R = lo5 all our three-mode solutions were steady, and when 
R was high enough for time dependence to occur the motion was more ordered than 
the two-mode solutions. Some features of these solutions are listed in table 2. 

We have found no aperiodic solutions with c7 2 6.8 and R < lo’. There is some 
diversity in the forms of the periodic solutions, though usually the flow is dominated 
by the fundamental mode. Yet an important contribution to the activity comes from 
the overtone modes, for without them sustained time dependence is impossible. For 
some solutions the response of the fundamental is a change in sign of W, everywhere, 
signifying a reversal in the flow direction, whereas for others i t  is merely a large 
fluctuation in the speed of circulation in the cell. Examples of such solutions are 
illustrated in figures 2 4 .  

The time evolution of a periodic solution for a hexagon and its aligned overtone 
(F, 2) is represented in figure 2 (a) by the mean temperature and the amplitude W,, 
W, of the vertical components of velocity of the two modes. Here R = lo6, a,  = 10 
and a = 6.8. The periodic solutions a t  R = lo5 and R = 5 x lo5 are similar. In  this 
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a = l  a = 6.8 

R Class 

105 1: (F, 2) 

2: {F, d 3 )  

3: [F, 21 

5 x  lo5 1: (F, 2) 

106 1: (F, 2) 

2: {F, 2/31 

3: [F, 21 

a1 N 
2.0 5 6  
3.0 4.8 
3.5 4.7 
4.0 4.8 
50 4.7 
6 0  4 5  
6.5 3.7 
8.0 4 1  

3.5 5.9 
40 4.1 
5.0 4.2 
6.0 4.2 
7-0 4 2  
8.0 4.1 
8.5 4 1  
9 0  4 3  

4.0 3.3 
5.0 3.3 
6.0 3.4 
8.0 3.9 
4.0 - 
6.0 102 
8.0 7.0 

10.0 6.1 
2.0 104 
40 101 
6 0  103 
8 0  101 

100 9.2 
12.0 8.0 
14.0 7.1 
12-0 - 
140 7.6 
16.0 7.6 
18.0 7.8 
200 8.5 

6 0  11.0 
8.0 108 

100 101 

AFb/N P 

S 
0 9  031 
0 8  022 
0 8  018 
0 8  015 
0 9  017 

S 
S 

S 
1.0 026 
0 9  021 
0 9  018 
1.2 017 
1.4 021 
1.5 0.26 

S 

S 
- 0141 
- 015 

S 

S 

S 
S 

- 

- 
- 

- 

- 

- 

- 

- - 

- 
0 6  0099 
- 
- 
0 2  00090 
01 00080 
0 2  00084 
0 2  00092 
0 4  0.013 

S 
S 

- 
- 
0 1  00033$ 
1.0 0038 
1.0 0.075 

S - 

0 6  00104t 
0 3  0.0083 
0 3  00073 

N 
- 

- 

- 

6.0 
4.4 
4 2  

4.8 
- 

- 

- 
- 
4 5  

4.1 

44  

4.5 
4.2 

- 

- 

- 

- 

8.0 
8.1 
7.3 
6 4  

12.3 
11.4 
11.0 
10.0 
9 2  
8.1 

6 4  
8 4  

- 

- 

- 

- 

- 
- 

- 

AF,/N P 

- - 

- S 
0 6  016 
0 5  0.13 

S 
- - 
- 

- - 
- S 

0.7 018 

S 

S 
S 

- - 

- - 

- 

- - 

- 

- 
- - 

0.1 0.014 
0 1  0012 
0 1  0013 
0 5  0019 
- - 

S - 
0 2  00057 
0 1  00050 
0 2  00059 
0 3  0.0217 

S - 
- - 
0 2  00096)) 
0.7 0028 
- - 

continued on facing page 

example, the overtone mode has roughly half the amplitude of the fundamental, and 
represents two superposed layers of cells, always oriented such that fluid leaves the 
walls in plumes. The oscillation of the fundamental cell is accomplished by the 
formation of countercells in the thermal boundary layers, which grow a t  the expense 
of the main cell, eventually destroying it and merging to form a single cell whose flow 
is oppositely directed to that of the original cell. The process then repeats to restore 
the original state. The second half of the cycle is essentially the same as the first, since 
in this case the solution a t  any instant can be derived from the solution half a period 
earlier by the transformation (2.10). Thus there are two maxima per period in the 
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u = 6 8  u = 200 

R Class a, N AFbF,IN P N AF,/N P 

S 11.3 - S 4: {F, 4 3 ,  2) 100 11.3 - 
12.0 10.4 - S 103 0.1 00098 
140 9.5 0 5  0012 9.3 0.5 00088 
160 8.9 S 8.8 - 

1 0 7  I :  (F, 2) 6.0 25.6 0 1  000lS$ - - - 
150 20.8 0.1 0.0030$ - - - 

- S 

- - - 4: {F, 4 3 ,  2) 140 26.0 - S 
150 25.3 0 4  001438 25.5 0.2 00068 
200 23.8 - s 231 0.3 00077 
240 - - - 17.9 0.7 00082$ 

TABLE 2. Properties of time-dependent multimode solutions. The modal configurations are 
identified by class in the second column (see table 1) and in the third column by the wavenumber 
a, of the fundamental mode. Tabulated for each value of the Rayleigh number R and Prandtl 
number u are the Nusselt number N ,  the relative heat flux variation AFb/N, where AFb is the 
difference between the greatest and least values of the heat flux a t  either boundary, and the 
oscillation period P.  In cases where AFb/N 2 02,  substantial excursions of Eb from the mean occur 
during relatively short intervals of time. Nusselt numbers for steady solutions are in italics. In order 
to give an idea of the range of wavenumbers within which time-dependent solutions exist, we 
indicate, when we have the information, where solutions tend to steady states (with the symbol 
‘S’). Note that the three-mode entries under ~7 = 68 and ~7 = 200 actually have u = 200 and 

t The periods quoted for squares are the complete periods of oscillation of the flow; the heat 

$ The osciliations are not strictly periodic, bu t  are modulated slightly on a timescale longer than 

5 Each period consists of two similar oscillations of the flow, which are executed in a time interval 

11 The solution suffers occaaional irregularly spaced bursts. 

u = 104. 

flux varies with half that period. 

the periods quoted. 

of about 0007. 

heat flux at the boundaries, illustrated in figure 2 (b).  The symmetry between the two 
halves of the cycle is typical of the (F, 2) solutions. 

Figure 3 (a )  depicts the time evolution of a solution of a hexagon and its rotationally 
displaced overtone: type (F, 4 3 ) .  Here a, = 16, and again R = lo6 and c = 6.8. The 
principal difference between this solution and that for (F, 2) is that  here the period 
is about four times longer and mode 2 shows more convolutions in its structure. The 
configuration in which the flow is most commonly found is one in which the 
fundamentaI has no interior zero and the overtone has one. The reversal in mode 1 
is accomplished by the growth of a single countereell near one of the boundaries, this 
having just occurred near the upper boundary (to the right) at the beginning of the 
time sequence illustrated in figure 3(a ) .  The countercell grows in amplitude and 
extent, generating a large heat flux a t  the boundary from which i t  grew, and 
eventually displaces the original cell. Subsequently the flow relaxes thermally, the 
overall kinetic energy of the motion decreases, and the boundary layers in Tenlarge 
until the lower boundary layer becomes unstable to the growth of a countercell. The 
second half of the cycle is just like the first, being derivable from i t  by the 
transformation (2.10). This solution exhibits variations in the heat flux a t  the 
boundaries, shown in figure 3 ( b ) ,  that have considerably greater amplitude than in 
the previous (F, 2) case. 
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i = 0.16P 

1 

T 

0 
0 0.1 0.3 0.5 0.7 0.9 1 

iik]: (iii) 

-1L-O 
0 0.1 0.3 0.5 0.7 0.9 1 

Z (a ) 

(i t  (ii) (iii) ( iv)  (v) (vi) 

FIGURE 2 .  (a )  Mean temperature and velocity amplitudes W,, W, for a hexagon and its aligned 
overtone (F ,2) .  R = lo6, rr = 6.8, a,  = 10, N = 9.20. W, and W, are plotted in units of their 
maximum values, 310 and 174 respectively. The abscissa is marked at intervals of 0.1 in z. The 
solution is periodic in t with period P = 9 2  x lop3, and the panels are a t  six uniformly spaced times 
i, which is simply time measured from the first panel. For most of the time W, has the same sign 
everywhere, as in ( i ) ,  (iii), ( iv) and (vi); the transitions, which are captured in (ii) and (v), are quite 
abrupt. We have found similar periodic solutions a t  R = lo5 and 5 x lo5. ( b )  Time vari+ion of the 
heat fluxes F! (solid line) and F, (dotted line) a t  the lower and upper plates. The times t associated 
with the six panels in (a )  are marked on the upper border of the panel. The boundary fluxes are 
related by F,(t) = F&+ tP) .  The solution in the second half of a cycle is derivable from that in the 
first half by the transformation (2.10). This is a property of all our two-mode solutions. Two 
interacting squares are superficially similar to this case, and possess the additional symmetry, never 
found in the hexagon solutions, of having the fundamental mode spatially symmetrical about z = 2 
and the overtone antisymmetrical. In that case F,(t) = Fd(t),  and the period of the heat-flux 
oscillations is half that of the oscillation of the flow. 
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FIQURE 3. Similar to figure 2, showing a hexagon and its related overtone {F, 4 3 ) .  R = lo6, u = 6.8, 
a, = 16, N = 7.62 and P = 378 x lo-,. The degree of stretching of the z-scale is the same as in figures 
2 and 4. W, and W, are plotted in units of their maximum values, 296 and 72 respectively. 
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An example of a three-mode time-dependent periodic solution is shown in figure 
4 for a hexagon and its two principal horizontal overtones, of type {F, 4 3 ,  2 ) .  The 
left panels of figure 4 ( a )  are plots of (i = 1,  2,  3 )  as functions of z a t  
uniformly separated times through one period of the solution. The right panels show 
the total heat flux F and temperature fluctuation amplitudes Oi at the same times. 
The parameters are R = lo6, (T = 6.8 and a, = 14. The wavenumber is in the middle 
of the fairly narrow range in which time dependence is found a t  these values of R 
and g. Since N = 9.48, a non-uniform z-scale has been chosen so that the structures 
of the boundary layers may be seen. 

The solution illustrated in figure 4 is dominated by the fundamental, which 
contains ten times more kinetic energy than the overtones and transports most of 
the heat. The fundamental (mode 1)  is modulated in amplitude by the overtones, but 
it does not reverse sign, as is also the case for the aligned overtone (mode 3).  It is 
the rotated overtone (mode 2 )  that exhibits the most complicated behaviour, but i t  
has the least kinetic energy and so has only a small direct effect on the heat flux. 
Some aspects of the relative importance of the velocity variation in different modes 
may be seen in figure 4(b) .  Each overtone experiences variations in kinetic energy 
of about 1.5 x lo2. This is a modest perturbation on the energy of the aligned 
overtone, but it is comparable to the mean kinetic energy of the rotated overtone. 
The energy of the fundamental is about lo4, and its fluctuations are comparable to 
this. Hence we conclude that the principal source of temporal variation in the 
fundamental is its interaction with the mean field, though the presence of a t  least 
one of the overtones is essential. 

I n  figure 4 (c) is shown the time dependence of the heat flux at the two boundaries. 
The amplitude of the variation is 20 yo. I n  contrast, as can be seen in the right panels 
in figure 4(a), large temporal variations in the heat flux F occur in the body of the 
fluid. Two-mode solutions have a similar property. I n  this example, the maximum 
(in z )  vertical heat flux varies between 3 and 23. Such thermal bursts are a common 
feature of our time-dependent solutions. 

To picture the flow pattern as i t  might look to a numerical experimenter, we have 
used contour plots of the vertical velocity. I n  figure 5 we present shaded versions of 
such plots for the same four times as in figure 4 (a ) .  The view shown is of the boundary 
layer, a t  z = 0.05. The velocity is upward in the darker regions. The appearance of 
figure 5 is insensitive to location in the boundary layer and is similar for the other 
boundary layer. A comparable picture for the vertical velocity in the interior would 
look much more like a one-mode pattern, though the small-scale structure remains 
discernible. The individual frames in figure 5 show that there is a transition in the 
time evolution between the domination of the small-scale structure with characteristic 
horizontal scale 2n/2a1 and the large-scale structure with scale 2n/a,. When small 
scales dominate, the flow consists of isolated rising plumes. When the large scales 
preponderate, the hexagonal structure is more pronounced. An interesting feature 
of the large-scale flow is that  the eye tends to pick out hexagons with vertices a t  the 
centres of the six fundamental modes immediately surrounding some particular mode. 
Thus there is a rising column of fluid a t  the centre and spokes of rising fluid radiating 
to the vertices. The visual scale appears to change by a factor 4 during the course 
of the time dependence, even though the greatest and least wavenumbers of the 
planforms differ by a factor of only 2. 

Returning to the structure of the solutions, we show in figure 6 the time-averaged 
r.m.s. temperature and velocity fields for the three-mode example illustrated in 
figures 4 and 5. The results are not dissimilar to those of comparable one-mode 

and 
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solutions presented in 11. In  particular, the midplane mean temperature is not equal 
to +, and the vertical velocity achieves its maximum closer to the boundary towards 
which the central column of the hexagon is flowing. 

These results are fairly characteristic of our three-mode periodic solutions. At 
R = lo6 all the time-dependent three-mode solutions we investigated were periodic, 
but a t  R = lo7 periodic solutions were found only for u 2 200. Time variations 
generally become smoother as u is increased above unity. Two-mode solutions are 
also periodic at high u, and if R 2 5 x lo5 they are aperiodic when u N 1. The 
transition occurs a t  higher values of u for higher R. The nature of the aperiodic 
solutions is complicated and varied. We suspect that some of these solutions alternate 
irregularly between two nearly periodic flows having different periods. Other 
aperiodic solutions are more chaotic and possess no discernible systematic variation 
in time. At even lower values of CT the two-mode solutions are again periodic, but 
the flow is very different from the high-u solutions. The region is divided into two 
convecting layers separated by a diffusive interface, which moves from one plate to 
the next and then returns. We suspect that  this behaviour is a consequence of our 
having an overrestricted representation of the flow. At the lowest value of u we 
investigated (CT = lo-,) solutions were steady, and usually several stable states could 
be found for given values of R and a,. 

4. High overtones 
Our choice of the lowest overtones in the two- and three-mode studies of $ 3  was 

motivated by the wish to  obtain improved dynamical descriptions of flow in a single 
cell. But evidence exists for the importance of diverse scales of motion in fixing the 
heat flux a t  very high Rayleigh number. Convection in the sun shows cell-like 
structures on disparate horizontal scales. And recent experiments by R. Krishnamurti 
(1  980, private communication) show qualitatively similar structur6s. Within the 
context of the present description, we have argued (reported in Spiegel 1971) that 
modes confined in the boundary layer created by the fundamental produce marked 
changes in the total Nusselt number. The picture is like that in the flows used to 
maximize heat flux by Busse (1969) and Chen (1971). In this section we attempt to 
quantify these ideas by reporting on three-mode solutions in which the overtones have 
relatively high wavenumbers, in some cases high enough so that their horizontal scales 
are as small as the thickness of the principal boundary layer. 

To force the small scales by advection terms, we chose triads of hexagons for which 
Ciik + 0, and confined our attention to  aligned hexagons. This is case (F, n, n+ 1) 

.described in appendix A, The wavenumber a, is of order unity and the value of n 
is of the order of the Nusselt number N as calculated by one-mode theory a t  a 
wavenumber a,. One question that especially interested us was whether the amplitude 
of the overtones would indeed be preferentially high in the boundary layers. 
Unfortunately, we found that there is not a simple answer to this question and that 
the number of possibilities is large. We shall therefore simply attempt to outline some 
of these. 

We concentrate on R = lo7, which is large but still manageable numerically. We 
discuss only u = 10, a, = 3, and let a, vary from 15 to 114. Throughout this entire 
range we found stable steady solutions and, except for the highest values of a,, several 
such solutionsexist. Whena, > 78 the amplitudes of the overtones were imperceptible. 
For 74 < a2 < 78 only the lower overtone is excited. For a2 > 60 both overtones are 
concentrated near boundaries. Sometimes each is concentrated near to a single 
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FIGURE 4. (a) A periodic three-mode hexagon solution {F, d3, 2). R = log, u = 6.8, 
(al ,  a2,a3) = (14,24.2,28), N = 948 and P = 1.20 x lo-,. The left panels are the mean temperature 
T and velocity amplitudes K., plotted as functions of z at four equally spaced times during one 
period. The right panels are the total heat flux F and the temperature fluctuation amplitudes 0,. 
W,, W, and W, are scaled by their respective maxima: 321, 46 and 84; and a,, 0, and 0, similarly 
by 0122,0.094 and 0.094. The abscissa is marked at  intervals of 0 1  in z ;  the stretching of the scale 
is the same in all panels, and is identical with that in figures 2 and 3. (b )  Kinetic-energy contributipns 
E,(t) of the three modes illustrated in (a ) .  The origin of time is the same as in (a) .  The times t of 
the four sets of panels in ( a )  are indicated on the upper border. (c) The heat fluxes Fd(t) (solid line) 
and Fu(t) (dotted line) a t  the lower and upper plates. 

X 

FIGURE 5. Contours of vertical velocity amplitude evaluated on the horizontal plane a t  z = 0.05 
for the four solutions shown in figure 4(a). Here the velocity is upwards in the darker regions, 
downwards in the lighter regions. 
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L 

FIGURE 6. The average over one period of the r.m.s. velocity and temperature fluctuations, and 
the time-averaged mean temperature for the solution illustrated in figures 4 and 5, plotted on a 
uniform scale against z. The amplitudes w,,,, O,,,, and (T) are defined by (2.14) and (2.15). The 
values of w,,, and Or,, have been divided by 277 and 0205 respectively. 

boundary (either the same or different boundaries) ; sometimes one is concentrated 
near both boundaries while the other is mainly near one; and sometimes they both 
are concentrated near both boundaries. I n  short, all conceivable combinations seem 
possible. All these variants produce comparable enhancements in the heat flux over 
the one-mode results. (We have never produced a reduction in N by the addition of 
high overtone modes.) Finally, when a2 decreases below 60 the overtones begin to 
lose their boundary-layer character, and spread through the body of the fluid, 
achieving the full spread in z when a, reaches about 30, which is close to the 
wavenumber that maximizes N in the one-mode approximation. Regarded as a 
function of a2, N attains its maximum of 27.3 a t  a2 = 20. At this wavenumber the 
one-mode result is N = 16.2. Figure 7 illustrates two steady solutions for (F, 13, 14) 
with a, = 3. The z-scale is stretched to  bring out the structure of the boundary layer. 

I n  the range 30 < a2 < 50 we found time-dependent solutions, but the computing 
time required to decide whether a given case evolves to a periodic solution is too long 
to permit a thorough survey. Generally, we have observed that most of the solutions 
of the type discussed in this section have at least two timescales, one associated with 
the fundamental and one with the overtones. The cases that were run for long times 
appear to be quasiperiodic. Figure 8 shows the temporal development of a solution 
for the same parameters as figure 7 .  This underlines the richness of the solution space: 
stable steady solutions and time-dependent solutions seem to coexist in parameter 
space, though we cannot guarantee that the solution of figure 8 does not ultimately 
become either periodic or even steady. 

5. Comparison with experiments 
We concentrate on the experiments performed a t  high Rayleigh numbers, where 

the flow is time-dependent. Studies with fluids with u 2 6.8 show t'hat as R is 
increased above R,, after some change in the patterns of steady flow, convection 
becomes periodic in time (Rossby 1966,1969; Willis & Deardorff 1967 ; Krishnamurti 
1970). At first only a small fraction of the convection cells partake in the oscillations, 
but, as R is increased, more join in until almost all the cells in the layer are oscillating 
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FIQURE 7. Velocity amplitudes and mean temperature of two steady high-overtone solutions for 
three aligned hexagonal planforms: (F, 13, 14). R = lo7, CT = 10, at = (3, 39,42). The abscissa is 
non-uniform in z as indicated. The amplitudes W, are measured in units of their range q. (a )  

= (1042, 283, 194), N = 22.4. (6) Rt = (1045, 61, 318), N = 22.0. 
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FIQURE 8. Segment of the time variation of the kinetic-energy contributions E,(t)  for a high-overtone 
solution (F, 13, 14). As in the cases illustrated in figure 7, R = lo7, IT = 10, a, = (3, 39, 42). The 
modes have aligned hexagonal planforms. The fundamental and the overtones each appear to 
oscillate with their own periods; the ratio of these periods is 49.  The evolution to this system was 
slow, and we do not know whether the period ratio has reached a steady value. The kinetic energy 
E, varies between 7.42 x lo5 and 759 x lo5, E, between 57% and 1.43 x lo3, and E3 between 83.6 
and 1.10 x lo3. 

(Whitehead & Chan 1976; Whitehead & Parsons 1978). This is consistent with the 
results of Berg6 & Dubois (1976), who found intermittent periodic oscillations in 
velocity a t  R = 30R,, (T = 130, though Gollub & Benson (1978) report the onset of 
strictly periodic oscillations at  R = 20R,, (T = 3. When viewed with a shadowgraph 
the periodic flows show spoke-shaped patterns, which appear to come and go in time, 
on a spatial scale somewhat larger than that of the most prominent cells (Busse & 
Whitehead 1974; J.  A. Whitehead 1978 laboratory cin6 film of time-dependent 
convection (private communication)). As R is increased further, the flow becomes 
aperiodic, though ordered structures are still evident. 

At lower Prandtl numbers the situation is somewhat different. The lowest Rayleigh 
number at  which time dependence occurs decreases as (T decreases, and the flow 
appears to have a higher component of vertical vorticity (see Willis & Deardorff 1970; 
Rossby 1969; Krishnamurti 1973). Vertical vorticity is also manifest in the steady 
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flows a t  lower R (Busse & Clever 1979) and its importance has been discussed in terms 
of finite-amplitude expansions by Busse (1972) and Clever & Busse (1974). At the 
lowest Prandtl number a t  which experiments have been performed (with mercury, 
u = 0025),  time dependence sets in for R very close to R, and is aperiodic a t  the 
outset. 

The experiments with large-Prandtl-number fluids generally reveal oscillation 
periods P that decrease with increasing Rayleigh number approximately as P K R-i; 
often one or more conspicuous overtones (and possibly a subharmonic) of the 
fundamental period are present. According to Berg6 & Dubois (1976) and Gollub & 
Benson (1978, 1980), who constructed temporal Fourier power spectra of the 
fluctuating velocities, aperiodicity may first arise simply with the appearance of an 
overtone whose frequency is incommensurable with that of the fundamental. 
According to' Ahlers & Behringer (1978), who worked with liquid helium in a cylinder 
with small aspect ratio, the Rayleigh number a t  which this kind of flow gives way 
to one with a broad band spectrum decreases as the aspect ratio increases. 

There is considerable scatter in the reported periods. Moreover, the transition from 
steady to oscillatory convection occurs a t  somewhat different Rayleigh numbers in 
the various experiments, ranging from 23 to  200 times the critical Rayleigh number 
R,. Whitehead & Parsons (1978) tried to reconcile these differences with experimental 
evidence that convection can choose to  be either steady or oscillatory over a 
considerable range in R, depending on initial conditions. Steady convection can 
persist to higher R if the initial cellular pattern is forced to be regular, as in the manner 
of Busse & Whitehead (1974), who artfully induced uniform bimodal planforms. 
Prominent dislocations introduced into this pattern led to oscillations in portions of 
the fluid, with the cells developing spoke-like patterns. Although the highest R for 
which steady bimodal convection can be maintained increases with Prandtl number 
u, the Rayleigh number of onset of oscillations in more irregular convection shows 
no clear variation with u. 

We begin the comparison between our modal solutions and real convection with 
an examination of the Nusselt numbers. As with the single-mode results, the values 
of N associated with the two- and three-mode steady solutions vary over a wide range 
as the wavenumber a, is changed. Thus we cannot predict the Nusselt number from 
these solutions, and in this sense the multimode solutions share the arbitrariness of 
the single-mode results in 11. I n  principle, if we had a very large number of modes 
spanning a wide range of wavenumbers, the dominant scales should emerge 
automatically, but such a calculation is quite impracticable without a substantial 
decrease in vertical resolution. 

A striking feature of the multimode solutions, not exhibited by the single-mode 
solutions, is the possibility of time dependence. It is clear from table 2 that N is rather 
insensitive to a, in the ranges where periodic solutions are obtained for a given R. 
Thus for the discussion of the heat flux i t  does not matter much which of these 
solutions we choose to  compare with the Nusselt numbers of observed time-dependent 
flows. 

The periods of oscillation of our modal solutions do vary with a,. At fixed R the 
periods attain a single minimum and appear to become very large as the limits of 
the wavenumber range of time dependence are approached. Possibly, steady states 
a t  these limits are approached by the periods tending to infinity. 

For want of an obvious alternative, we have chosen the minimum periods when 
comparing our results with experiment. I n  figure 9 we plot these periods for CT = 6.8. 
The shaded region encompasses the periods observed in the experiments for moderate 
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FIGURE 9. Periods of time-dependent numerical solutions compared with those reported from 
laboratory experiments. The symbols denoting the modal results are as follows: 0,  (F, 2);  A, 
{F, .\/3}; B, {F, 2/3,2}. The shaded area covers the observed periods, which are estimates from 
Rossby (1969) and Krishnamurti (1973); its narrowness at high R is undoubtedly a result of the 
paucity of experiments. 

cr. Except a t  R = lo5, the (F, 2) solutions yield periods right on the experimental 
values, and vary as R-o'62, close to the R-% variations reported in individual experi- 
ments; the three-mode solutions for {F, d3, 2} also yield P within the apparent 
scatter of the laboratory measurements. The narrowness of the shaded band in figure 
9 where R exceeds lo6 simply reflects the paucity of experimental data. The periods 
obtained with our two-mode solutions at R = lo5 seem to be too high: three-mode 
solutions there are steady. We cannot offer an explanation of why our results should 
be worse at low R when we are using a method that one might well expect to 
deteriorate as R increases. It may well be that, as the low-R edge of the periodic 
domain is approached, the period goes to infinity, just as (we conjecture) is the case as 
a, approaches the edges of the instability band. However the general variation of P 
with R is encouraging, suggesting that these simple models may contain some of the 
physics of the periodic time dependence observed a t  R = lo6 and lo7 when the 
Prandtl number is moderate. 

Our main results for the solutions with shortest period are summarized in table 
3. The laboratory results are compounded from several sources, since often N was 
measured only approximately in the studies reporting on the periods P. With our 
solution choice we obtain a reasonable fit to the measured Nusselt numbers for R 
between lo5 and lo6, though agreement breaks down by 10'. Moreover, the values 
of a, for which three-mode solutions (in principle, our best representations of 
convection) are found to be time dependent compare satisfactorily with the wave- 
numbers below which 90 % of the heat is transported in the experiments of Deardorff 
& Willis (1967). 

We note that the spoke-pattern convection observed a t  high cr bears some 
resemblance to the flows obtained with our three-mode periodic solutions. Busse & 
Whitehead (1974) describe the pattern, which is not unlike what is illustrated in 
figure 5 ,  but less regular of course. The time dependence apparently takes the form 
of an oscillation of the spokes, which is sometimes so vigorous that the large-scale 
visual structure is destroyed temporarily at some epochs in the period. This can be 
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1:  (F, 2) 2 :  {F, 4 3 }  3:  {F, 4 3 , 2 }  Experiments 

R N P N P N P N t  ps 
1 0 5  4.4 0 1 4  4.1 0 1 8  - S 4-5 0 0 1 5 4 0 5  
5~ lo5 7.7 0 1 2  - - - S 7-0 0008-0-02 
1 0 6  1 0 1  00073 7.6 0038 9.5 0012 8.5 0 0 0 8 4 0 1 2  
107 256  00018 - - 25.4 00032 16.2 0002 - 

TABLE 3. Comparison of Nusselt numbers N and periods P in typical periodic time-dependent 
solutions with those reported from laboratory experiments, for = 6.8 and several R. R denotes 
a steady solution and dashes denote an absence of information. 

t N values from 11, table 1 .  
1 P-estimates from Rossby (1969) and Krishnamurti (1973). 

seen by looking a t  individual frames of time-lapse films made by Whitehead in 1978. 
Thus the periodic appearance and reappearance of large-scale structure (and hence 
a periodic change in the apparent horizontal scale of the convection) is at least one 
characteristic of the flow that  we reproduce without vertical vorticity. The films also 
show horizontal distortions of the spokes, which are probably associated with vertical 
vorticity, though it is not obvious that this is an essential ingredient of the periodic 
flows. 

6. Conclusion 
There are several other theoretical treatments of convection that predict time 

dependence. For example, Lorenz (1963) discovered that time dependence could be 
found when convection is described with only three normal modes of linear theory. 
Thus he was led to  a model for deterministic chaos. That model may be obtained from 
our single-mode model (I) by expanding W ,  0, and in Fourier series in z and 
retaining only one term in each. Yet our single-mode equations never give sustained 
time dependence, whereas for suitable choice of parameters the Lorenz model does. 
This difference provides one more illustration of the dangers of drastic truncation, 
and the lesson applies also to the present work. How should one decide whether the 
degree of truncation is too severe ? 

Higher truncations than that of Lorenz have been examined by Saltzman (1962) 
and Curry (1978) in two dimensions, and by McLaughlin & Martin (1975) in three, 
and were also found to yield chaotic solutions. The two-dimensional results are 
disquieting because numerical solutions of the full equations, such as those of Moore 
& Weiss (1973), are never chaotic, though periodic time dependence sometimes occurs. 
In  a related two-dimensional study by Maschke & Saramito (1979) the number of 
modes was increased until the results converged in some sense. The criterion used 
was that the Rayleigh number a t  the onset of chaos was no longer a function of the 
number of modes retained. This occurred when about eighty Fourier modes in the 
horizontal and vertical had been included. It would not be possible to measure the 
accuracy of our truncation by such standards since effectively we have thousands of 
vertical modes and just a few horizontal ones. Also, in our procedure, it is not practical 
to increase the number of horizontal modes by very much. However, the fact that 
our time dependence resembles some of the flows measured in experiments suggests 
that, although the three-mode truncation may not serve as an accurate approximation 
to time-dependent convection, i t  may provide a useful qualitative model. 
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Another description of time-dependent buoyant dynamics has been given by 
Howard (1966). I n  his picture, a thermal boundary layer forms, thickens to the point 
of instability, and disrupts to  agitate the main body of the fluid, presumably by the 
motion of thermals. The timescales predicted by Howard agree reasonably well with 
those measured, and to some extent with our periods. Yet the two qualitative pictures 
seem different in many ways. However, as we shall explain presently, there are certain 
similarities, and in any case the two descriptions may well correspond to two diverse 
physical descriptions of time-dependent convection. In particular, R. Krishnamurti 
(1980, private communication) has observed recently that time dependence might 
indeed be caused either by thermals or by the advection of hot spots in cellular motion. 

Howard’s (1966) model of thermal bursts resulting from convective instability of 
the boundary layers predicts the period to be the thermal diffusion time across the 
boundary layers, whereas, if the flow were better described by Welander’s (1967) 
model of hot and cold inhomogeneities advected by the large-scale flow, the turnover 
time of the fundamental mode is more directly relevant. Actually, as can be seen from 
the single-mode asymptotic analysis in I, these two times are essentially the same: 
steady flow occurs when there is a balance between diffusive enlargement of the 
thermal boundary layers and advective diminution. 

Besides these attempts to calculate periods, there have also been fuller discussions 
of the causes of time dependence. One of the issues that has been raised is the relative 
importance of buoyancy and inertia in the development of convective oscillations. 
The Howard model and the Welander tube (Welander 1967; Keller 1966) are 
controlled by buoyancy; in fact a version of the latter is described by the Lorenz 
(1963) equations (L. N. Howard & W. V. R. Malkus, unpublished manuscript; Yorke 
& Yorke 1981). In  contrast, in the work of Busse and collaborators the role of the 
inertial terms is important (Busse 1972; Clever & Busse 1974; Busse & Whitehead 
1971, 1974). The analysis by Clever & Busse of the spatially oscillatory instability 
of bimodal convection, a t  low Prandtl number and slightly supercritical Rayleigh 
numbers, seems to reproduce observed periods of time-dependent convection in air 
reasonably well (Krishnamurti 1970, 1973; Willis & Deardorff 1967, 1970), and 
agreement with experiments in liquid helium is very good (A. Libchaber 1981 
private communication). The instability is a breakdown of purely two-dimensional 
flow and, at least when CT < 1, is caused by the excitation of the vertical vorticity 
modes found in linear theory (Ledoux, Schwarzschild & Spiegel 1961). Our present 
calculation omits such modes, and therefore cannot reproduce the BusseClever 
transition. 

I n  the case of a hexagon and one or both of its immediate overtones, the overtone 
modes approximate large-scale inhomogeneities, which are advected by the main 
mode. I n  a very rough way the model may be considered analogous to Welander’s. 
I n  this case the eddy turnover time appears to be important. 

The circulation time around a particle flow line is given by 

7 = $ 1  ul- lds ,  (6.1) 

where the integral is evaluated around the flow line. This time is determined by two 
factors: the magnitude of Wand the horizontal extent of the eddy. In  the singlc-mode 
solutions N and W achieve maxima with respect to  a a t  about the same point, but 
the flow geometry is such that the integral (6.1) increases as a decreases. Thus T 

achieves its minimum with respect to a a t  a value greater than the wavenumber a,  
a t  which N is maximized. On the other hand the boundary-layer thickness e is of order 
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Npl and achieves its minimum a t  a,. Where there are sufficient entries in table 2 
to estimate a,,, and the wavenumber a t  which the period is minimized, one can see 
that the latter exceeds the former, as does the wavenumber a t  which r is least. 

I n  an  equally crude sense our experiments with boundary-layer dwellers in $4 may 
be compared with Howard's theory. The growth of the boundarg-layer countercells, 
which eventually destroy and replace their predecessors, proceeds via a conversion 
of potential energy into kinetic energy, which is subsequently shared with the 
fundamental mode. The oscillation period of the boundary modes is less than the 
overturning time of the fundamental mode, and is presumably controlled largely by 
the boundary-layer instability. 

The major part of the numerical studies were carried out in New York a t  the 
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Appendix A. Summary of horizontal structure functions 

hexagons whose functional form is given by 
( i )  Two aligned hexagonal planforms (F, 2 ) .  Both planforms are Christopherson 

f , ( r ,y)  = $(X,Ui )  = ( ~ ) ~ [ C O S a i y + 2 c o s $ ~ 3 a i x c o s ~ a i  y]. 

For such hexagons C,,, = C,,, = C = 63 .  When a,  = 2a,, C,,, = gC and C,,, = 0 ;  
otherwise C,,, = C,,, = 0. The fundamental and the overtone hexagonal planform 
have the same orientation, and differ in scale by a factor 2 .  The remaining values 
of Ciik can be obtained from the symmetry relations Cijk = cjik = Ci,. 

(ii) Two rotationally displaced hexagonal planforms {F, 43}.  Both planforms are 
Christopherson hexagons, say $(x, a,) and &x, a,), where 4 is obtained from 4 by 
rotating the pattern through an angle 01. C,,, = C,,, = C. C,,, = C and C,,, = 0 when 
a, = 2/3 a, and 01 is an integral multiple of Qm; otherwise C,,, = C,,, = 0. 

(iii) Two aligned square planforms [F, 21. In this case fi = cosaix+cosaiy; 
C,,, = C,,, = 0, and, when a ,  = Za,, C',,, = a and C,,, = 0. 

(iv) A hexagonal planform and its twoJirst overtones {F, 4 3 ,  S } .  This is a Christo- 
pherson hexagon plus its two overtones as described in (i) and (ii): fi  = +(x,a,), 
f, = $ ( x , a 2 ) ,  f, = $(x,a3), where a, = v'3 a,  and a3 = 2a,. C,, ,  = C',,, = C333 = C,,, 
= C,,, = C, C,,, = &C and C,,, = C,,, = C,,, = 0. 

(v) Three parallel interacting hexagonal planforms (F, n, n + 1) .  This is a combination 
of three planforms fi = $(x,ai) whose wavenumbers are made to satisfy a, = na,, 
a,  = (n + 1) a, in order that fluctuation interactions be represented. Cijk = 0 unless 
i , j  and k are either equal or all different, in which case the value is $C. 
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